Atmospheric neutrinos in the far detector

Austin Schneider

Outline

- Atmospheric neutrinos
- Above 100 GeV
 - Planned sterile search
- Below 100 GeV
 - Analysis framework

Atmospheric neutrinos

- Neutrinos from cosmic ray interactions
- Wide range of energies and baselines
- From GeV to PeV and km to 1.2e4 km

- Mostly Mu flavor, ½ to 1/10 electron flavor depending on energy
- Spectrum peaks just below 1 GeV
- Drops off as E^{-3.7}
- Oscillation fits now happen in 2D

Atmospheric neutrinos (in) DUNE

- Rapidly falling flux \rightarrow low stats at high energies
- Below 100 GeV
 - Interactions in the detector volume are sufficient
 - PID is possible inside the detector
 - Access to tau appearance
- Above 100 GeV
 - < 30 interactions in a module per year across all flavors
 - Incoming muons → > 200 events per module per year
 - Access to muon disappearance
- Steriles
- Lorentz violation
- NSIs

- Neutral heavy leptons
- Mass varying neutrinos
- Decoherence

Unitarity

Above ~50 GeV Incoming muons

3+1/ through-going muons introduction

- Coming from IceCube
- DUNE far detector is sensitive in a window: 50 GeV to 1 TeV
 - o Interesting for 3+1, Lorentz violation, NSI, etc.
- Using open source IceCube atmospheric tools adapted for DUNE
 - Oscillations [nuSQuIDS]
 - Muon propagation [PROPOSAL]

Neutrino injection and weighting [LeptonInjector, LeptonWeighter]

Effect of θ_{34} in 3+1 scenario

Esmaili, A., Smirnov, A.Y., *J. High Energ. Phys.* 2013, 14 (2013). https://doi.org/10.1007/JHEP12(2013)014

3+1 signature in DUNE

- Neutrino and muon physics fully simulated
- Very simplified detector response (missing detector sim)
- ~7 starting muons per year per module above 100 GeV
- ~230 upgoing through-going muons per year per module

above 100 GeV

- (3+1) neutrino expectation vs 3 neutrino expectation
- Particularly sensitivity to non-zero θ_{34}

Sensitivity to 3+1 scenario

Many sectors to explore

- Steriles with non-zero θ₃₄
- Lorentz violation
- Non standard interactions
- Neutral heavy leptons
- Dark matter searches
- Neutrino decay

Below ~200 GeV Contained vertex

Below ~200 GeV

- CAFAna framework used for LBL analysis: Chris
 Backhouse (UCL) is adapting it for atmospheric
 neutrinos
- Using the same tooling means we can make use of LBL reconstruction, systematic errors etc. with minimal effort
- Selection, reconstruction, and analysis methods will be similar
- Recently added Earth oscillations
- Various BSM oscillation scenarios implemented
 - Sensitivity needs exploration

- Proof of concept: reproducing previous $\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\tau}$ sensitivity from Adam Aurisano
 - Very simple efficiency and systematic model
- Other analyses can be implemented in this same framework
- Strong point is v_T detection

Oscillation calculation

- Implementation of earth matter density profile [1][2]
- Compute 2D oscillogram using slab approximation
- Currently using CAFAna-native OscLib [3], will also interface to João Coelho's OscProb [4]
- Empirically, details of earth model don't matter much for this tau appearance analysis
- What about rapid oscillations?

40

20

 $P(V_{11} \rightarrow V_{7})$

True Energy (GeV)

Oscillation calculation

- Implementation of earth matter density profile [1][2]
- Compute 2D oscillogram using slab approximation
- Currently using CAFAna-native OscLib [3], will also interface to João Coelho's OscProb [4]
- Empirically, details of earth model don't matter much for this tau appearance analysis
- What about rapid oscillations?
- Alternate binning demonstrates we don't really reach the rapid regime
- Will do the analysis in this space in future

 $P(V_{11} \rightarrow V_{T})$

Upgoing

[1] Dziewonski and Anderson, Physics of the Earth and Planetary Interiors, 25 (1981) [2] F.D. Stacey, Physics of the Earth (Wiley, New York, 1969)

tups://github.com/CAFAnaFramework/OscLib https://github.com/joaoabcoelho/OscProb/

Oscillated spectra and sensitivities

- Analyze in 2D reco cosθ vs reco L/E space
- Oscillation probabilities allow weighting reco vs true distribution to any osc parameters
- Generate confidence intervals in a few seconds
- Fairly good agreement between Chris's result and prior art

- Physics we can explore in this regime
 - Unitarity bounds
 - o NSIs
 - Neutral heavy leptons
 - Dark matter (neutrino decay channel)
 - Steriles near atmospheric splitting
 - Mass hierarchy
 - CP violation
 - Others?

Summary

- There is a wide energy range to work with
- Good sensitivity to scenarios explored
 - Many scenarios to explore in both energy regimes (help needed!)
- Leverage the detail provided by a LArTPC
- Events from the bedrock ⇒ muon disappearance measurable above 50 GeV
- Events in the **detector** \Rightarrow **tau** appearance / **muon** disappearance measureable in the < **200 GeV** regime
- Tools for atmospherics are being adapted from both ends
- MIT/Harvard hosting a workshop for investigating DUNE/IceCube(upgrade) synergies [June 16th-18th]
 - Attendance will be virtual

Bonus Slides

Below ~200 GeV

- CAFAna framework used for LBL analysis: Chris Backhouse is adapting it for atmospheric neutrinos
 - Using the same tooling means we can make use of LBL reconstruction, systematic errors etc. with minimal effort
- Start by reproducing previous $v_{\mu} \rightarrow v_{\tau}$ sensitivity from Adam Aurisano
 - Very simple efficiency and systematic model
- Other analyses can be implemented in this same framework

- Using true (E,cos θ) flux*xsec and 4D (E,cos θ)true \rightarrow (E,cos θ)reco smearing matrix from Adam
 - o In future, load from standard CAF format gives user control over selection/binning etc
- Flat efficiencies 37% for v_{τ} , 0.5% for NC
- Profile over 25% overall scale systematic uncertainty

Oscillation calculation

- [1] https://github.com/CAFAnaFramework/OscLib
- [2] https://github.com/joaoabcoelho/OscProb/

- Earth oscillation calculation implemented in CAFAna-native OscLib [1],
 will also interface to João Coelho's OscProb [2]
- L/E space more convenient binning for oscillation calculation
 - Avoids rapid oscillations
- Not yet concerned about rapid oscillations
 - Analysis is clear of this regime

Mass hierarchy

Muons in DUNE (10 m)

3+1 signature in DUNE

- ~14 starting muons per year per module above 100 GeV
- ~230 upgoing through-going muons per year per module above 100 GeV

- (3+1) neutrino expectation vs 3 neutrino expectation
- Particularly sensitivity to non-zero θ_{34}

Muon reco $\cos(\theta_z)$

Muon reco $\cos(\theta_z)$

Analysis details/assumptions

- 1. 3 neutrino oscillation parameters fixed
- 2. Directional reconstruction error negligible
- 3. Energy resolution of muons is 10% and 20% for starting and through-going events respectively (log-normal distributed)
- 4. Simple model for rock
- 5. 14m x 58.2m x 12m liquid argon
- 6. 13.9m x 58.1m x 11.9m fiducial volume
- 7. H3a_SIBYLL23C conventional atmospheric flux (from nuflux [https://github.com/icecube/nuflux])
- 8. Only numu / numubar CC DIS final states assuming CSMS cross sections
- 9. Total interaction cross section from CSMS (CC + NC DIS)
- 10. Oscillation probability computed with tau regeneration and Glashow resonance
- 11. Oscillation probability computed on 1 GeV to 1 PeV 101 point log energy grid * 100 point cos zenith grid
- 12. Detector center at -1480m from surface (perhaps this should be the top or bottom of the detector?)
- 13. ~250,000 simulation events at final level
- 14. MC statistical errors accounted for via likelihood technique [https://austinschneider.github.io/MCLLH/]

Sterile neutrinos in IceCube

- Matter effects produce resonance in numubar disappearance
- Produces a sharp feature in energy and zenith angle!
- $\Delta m_{41}^2 = 1 \text{ eV}^2, \sin^2(2\theta_{24}) = 0.1$:

Searching for sterile neutrinos in IceCube

- Search for 3+1 matter resonance
- Scan in $\sin^2(2\theta_{24})$ and Δm^2
- θ_{34} is fixed to zero

IceCube Collaboration, Phys. Rev. Lett. 125, 141801 https://doi.org/10.1103/PhysRevLett.125.141801

IceCube Collaboration, Phys. Rev. D 102, 052009 https://doi.org/10.1103/PhysRevD.102.052009

IceCube data for 3+1

Data shape w.r.t. null shape

years of data

Best-Fit signal shape

IceCube Collaboration, Phys. Rev. Lett. 125, 141801 https://doi.org/10.1103/PhysRevLett.125.141801

Lorentz violation -- Work in progress

• Add higher dimensional operators to effective Hamiltonian

$$H \sim \frac{m^2}{2E} + \mathring{a}^{(3)} - E \cdot \mathring{c}^{(4)} + E^2 \cdot \mathring{a}^{(5)} - E^3 \cdot \mathring{c}^{(6)} \cdots$$

- Causes neutrino disappearance
- Focus on mu/tau mixing ⇒ muon neutrino and muon antineutrino disappearance
- Parameterization:

$$\qquad \qquad \text{Strength of LV} \qquad \boxed{\rho^{(3)}} = \sqrt{(\mathring{a}_{\mu\mu}^{(3)})^2 + (\text{Re}[\mathring{a}_{\mu\tau}^{(3)}])^2 + (\text{Im}[\mathring{a}_{\mu\tau}^{(3)}])^2}$$

 \circ Fraction on the diagonal $\mathring{a}_{\mu\nu}^{(3)}/\rho^{(3)}$

$$\dot{a}^{(3)} = \begin{pmatrix} a_{ee} & a_{e\mu} & a_{e\tau} \\ a_{e\mu}^* & a_{\mu\mu} & a_{\mu\tau} \\ a_{e\tau}^* & a_{\mu\tau}^* & a_{\tau\tau} \end{pmatrix} \qquad a_{\tau\tau} = -a_{ee} - a_{\mu\mu}$$

Lorentz Violation dimension 3 sensitivity

- 9 module-years (first ~5 years of operation)
- 5% normalization uncertainty, 0.01 CR spectral uncertainty
- 3 neutrino oscillation parameters fixed
- Wilks' w/ 2 degrees of freedom

<u>The IceCube Collaboration. Nature Phys</u> 14, 961–966 (2018). https://doi.org/10.1038/s41567-018-0172-2

Fast oscillations, expensive to compute. Need approximation in this regime.

